Start Date




Course Duration

3 חודשים | 5-6 שעות בשבוע

קורס זה מוגש בשפה האנגלית באמצעות פלטפורמת edX ולכן דורש הרשמה נפרדת.
:What you will learn

  • Fundamental theoretical contributions of sparse representation theory.
  • The importance of models in data processing.
  • Dictionary learning algorithms and their role in using this mode.
  • How to deploy sparse representations to signal and image processing tasks.


This course is a follow-up to the first introductory course of sparse representations. Whereas the first course puts emphasis on the theory and algorithms in this field, this course shows how these apply to actual signal and image processing needs.

Models play a central role in practically every task in signal and image processing. Sparse representation theory puts forward an emerging, highly effective, and universal such model. Its core idea is the description of the data as a linear combination of few building blocks - atoms - taken from a pre-defined dictionary of such fundamental elements.

In this course, you will learn how to use sparse representations in series of image processing tasks. We will cover applications such as denoising, deblurring, inpainting, image separation, compression, super-resolution, and more. A key feature in migrating from the theoretical model to its practical deployment is the adaptation of the dictionary to the signal. This topic, known as "dictionary learning" will be presented, along with ways to use the trained dictionaries in the above mentioned applications.

Going to an external system course. Additional registration is required
The course staff:
Alona Golts

About Me

Yaniv Romano

About Me

Prof. Michael Elad

About Me

Other courses that may interest you

In CampusIL you can find dozens of courses in various subjects: