תאריך התחלה

18/03/2020

מחיר

חינם

משך הקורס

3 חודשים | 5-6 שעות בשבוע

קורס זה מוגש בשפה האנגלית באמצעות פלטפורמת edX ולכן דורש הרשמה נפרדת.
What you will learn

  • About the fundamental ideas of sparse representation theory – exploring properties such as uniqueness, equivalence, and stability.
  • About sparse coding algorithms and their proven ability to perform well.

תיאור:

This course introduces the fundamentals of the field of sparse representations, starting with its theoretical concepts, and systematically presenting its key achievements. We will touch on theory and numerical algorithms.

Modeling data is the way we - scientists - believe that information should be explained and handled. Indeed, models play a central role in practically every task in signal and image processing. Sparse representation theory puts forward an emerging, highly effective, and universal such model. Its core idea is the description of the data as a linear combination of few building blocks - atoms - taken from a pre-defined dictionary of such fundamental elements.

A series of theoretical problems arise in deploying this seemingly simple model to data sources, leading to fascinating new results in linear algebra, approximation theory, optimization, and machine learning. In this course you will learn of these achievements, which serve as the foundations for a revolution that took place in signal and image processing in recent years.

מעבר לקורס במערכת חיצונית. נדרשת הרשמה נוספת
צוות הקורס:
Alona Golts

קצת עלי

Yaniv Romano

קצת עלי

Prof. Michael Elad

קצת עלי

קורסים נוספים שיכולים לעניין אותך

בואו לגלות עולמות חדשים של למידה במגוון רחב של קורסים מעולים: